
On Range Searching in the Group Model and Combinatorial Discrepancy

Kasper Green Larsen
MADALGO, Department of Computer Science

Aarhus University
Denmark

larsen@cs.au.dk

Abstract— In this paper we establish an intimate connection
between dynamic range searching in the group model and com-
binatorial discrepancy. Our result states that, for a broad class
of range searching data structures (including all known upper
bounds), it must hold that tutq = Ω(disc2/ lgn) where tu is the
worst case update time, tq the worst case query time and disc
is the combinatorial discrepancy of the range searching problem
in question. This relation immediately implies a whole range of
exceptionally high and near-tight lower bounds for all of the basic
range searching problems. We list a few of them in the following:

• For halfspace range searching in d-dimensional space, we get
a lower bound of tutq = Ω(n1−1/d/ lgn). This comes within
a lgn lg lgn factor of the best known upper bound.

• For orthogonal range searching in d-dimensional space, we
get a lower bound of tutq = Ω(lgd−2+µ(d) n), where µ(d) >
0 is some small but strictly positive function of d.

• For ball range searching in d-dimensional space, we get a
lower bound of tutq = Ω(n1−1/d/ lgn).

We note that the previous highest lower bound for any ex-
plicit problem, due to Pǎtraşcu [STOC’07], states that tq =
Ω((lgn/ lg(lgn + tu))2), which does however hold for a less
restrictive class of data structures.

Our result also has implications for the field of combinatorial
discrepancy. Using textbook range searching solutions, we improve
on the best known discrepancy upper bound for axis-aligned
rectangles in dimensions d ≥ 3.

Keywords-range searching; lower bounds; group model; discrep-
ancy; computational geometry;

1. INTRODUCTION

Range searching is one of the most fundamental and well-
studied topics in the fields of computational geometry and
spatial databases. The input to a range searching problem
consists of a set of n geometric objects, most typically
points in d-dimensional space, and the goal is to preprocess
the input into a data structure, such that given a query
range, one can efficiently aggregate information about the
input objects intersecting the query range. Some of the most
typical types of query ranges are axis-aligned rectangles,
halfspaces, simplices and balls.

The type of information computed over the input objects
intersecting a query range include for instance, counting the

Kasper Green Larsen is supported in part by a Google Europe Fellowship
in Search and Information Retrieval, and in part by MADALGO – Center
for Massive Data Algorithmics, a Center of the Danish National Research
Foundation.

number of such objects, reporting them and computing the
semi-group or group sum of a set of weights assigned to the
objects.

In the somewhat related field of combinatorial discrep-
ancy, the focus lies on understanding set systems. In partic-
ular, if (Y,A) is a set system, where Y = {1, . . . , n} are
the elements and A = {A1, . . . ,Am} is a family of subsets
of Y , then the minimum discrepancy problem asks to find a
2-coloring χ : Y → {−1,+1} of the elements in Y , such
that each set in A is colored as evenly as possible, i.e. find
χ minimizing disc(χ, Y,A), where

disc(χ, Y,A) = max
j

∣∣∣∣∣∣
∑
i∈Aj

χ(i)

∣∣∣∣∣∣ .
The main result of this paper is the establishment of an

intimate connection between dynamic range searching in
the group model and combinatorial discrepancy. Our results
have strong implications for both fields. For range searching,
we obtain exceptionally high and near-tight lower bounds for
all of the basic problems, and for combinatorial discrepancy
we improve the best upper bounds for one of the most well-
studied problems using textbook range searching solutions.

1.1. Range Searching in the Group Model

In this paper, we focus on dynamic range searching in the
group model. In this setting, each input object to a range
searching problem is assigned a weight from a commutative
group, and the goal is to preprocess an input set into a
data structure, consisting of a collection of group elements
and auxiliary data, such that given a query range, one can
efficiently compute the group sum of the weights assigned
to the input objects intersecting the query range. The data
structure answers queries by adding and subtracting a subset
of the precomputed group elements (in a group, each element
has an inverse element, thus we have subtraction) to finally
yield the answer to the query. In addition to answering
queries, we require that a data structure supports updating
the weights of the input objects.

Since the group model was first introduced there has been
two slightly different definitions of data structures in this
model, one a bit less restrictive than the other. The most
restrictive type of data structure is known in the literature

as oblivious, while the other type has not received a formal
name. To make the difference clear, we have chosen to name
this other type of data structure weakly oblivious. In the
following we review both definitions, starting with the least
restrictive:

Weakly Oblivious Data Structures: A weakly oblivious
data structure in the group model, is a dynamic data structure
with no understanding of the particular group in question, i.e.
it can only access and manipulate weights through black-box
addition and subtraction [15]. Thus from the data structure’s
point of view, each precomputed group element is just a
linear combination over the weights (and possibly previous
weights) assigned to the input objects. When answering a
query, such a data structure adds and subtracts a subset
of these linear combinations to finally yield the linear
combination summing exactly the weights currently assigned
to the input objects intersecting the query range. When given
an update request, the data structure may delete some of the
stored group elements, and also create new group elements
to store by adding and subtracting both previously stored
values and the newly assigned weight.

The query time of such a data structure is defined as
the number of precomputed group elements used when
answering a query, and the update time is defined as the
number of created and deleted group elements on an update
request. Thus deciding which precomputed group elements
to add and subtract is considered free of charge.

We note that if we did not require the data structure to
have no knowledge of the group in question, then range
searching over any finite group would be trivial: The data
structure could simply encode the weights assigned to the
input points in the auxiliary data, and thus compute the
answer to a query using no group operations at all. The
group model is thus incomparable to the classic cell-probe
model.

Oblivious Data Structures: The second, and slightly
more restrictive definition of data structures, was given by
Fredman [16]. Again data structures are considered to have
no knowledge of the group, and queries are still answered
by adding and subtracting precomputed linear combinations
over the weights assigned to the input points. The update
operations are however more constrained: an update of
the weight assigned to an input object p, is supported
simply by re-evaluating every precomputed group element
for which the weight of p occurs with non-zero coefficient
in the corresponding linear combination. Every stored group
element thus corresponds to a linear combination over the
currently assigned weights, and may not include previous
weights. We refer to such data structures as oblivious data
structures.

We define the query time of an oblivious data structure
as the number of group elements used when answering
a query, and the update time is defined as the number
of linear combinations that need to be re-evaluated when

updating the weight of an input object. We note that lower
bounds proved for weakly oblivious data structures also
apply to oblivious data structures. For a more formal and
mathematical definition of an oblivious data structure, we
refer the reader to Section 2.

Given that data structures in the group model have no un-
derstanding of the particular group in question, the additional
freedom allowed in the weakly oblivious group model might
seem artificial. Thus we note that the main motivating factor
for studying the weakly oblivious model, is that previous
lower bounds proved in this model were (somewhat) easily
extendible to cell probe lower bounds.

Previous Results: In the following, we first review
the previous results on lower bounds for range searching
problems in the (semi-group and) group model, and then
present the best known upper bounds for the two most
fundamental range searching problems: orthogonal range
searching and halfspace range searching.

In the related semi-group model, researchers have been
very successful in proving lower bounds. In the semi-group
model, input objects have been assigned a weight from a
commutative semi-group (elements do not necessarily have
inverse elements), and the goal is to compute the semi-group
sum of the weights assigned to input objects intersecting a
query range. Since there are no inverse elements, a data
structure cannot subtract. This gives a very geometric flavor
to range searching lower bound proofs: If a data structure
stores a precomputed semi-group element involving the
weight of an input object, then the query algorithm can only
use that precomputed group element when answering query
ranges that intersects that input object (its weight cannot be
cancelled out). Thus semi-group lower bound proofs boils
down to arguing that it is hard to “cover” all query ranges
with a small collection of subsets of input objects.

Unfortunately we have no such property when allowing
subtraction (i.e. the group model). The difficulties encoun-
tered when moving from the semi-group to the group model
have been recognized as major obstacles for decades, and we
believe the following quote by Pǎtraşcu captures the essence
of these difficulties:

“Philosophically speaking, the difference in the type of
reasoning behind semi-group lower bounds and group lower
bounds is parallel to the difference between understanding
geometry and understanding computation. Since we have
been vastly more successful at the former, it should not come
as a surprise that progress outside the semi-group model has
been extremely slow [20].”

In 1982, Fredman [16] gave the definition of an oblivious
data structure in the group model. Under this definition, he
managed to prove an Ω(lg n) lower bound on the average
cost per operation in a sequence of n updates and n queries
to the partial sums problem. In the partial sums problem,
the input is an array of n entries, each storing an element
from a commutative group, and the goal is to support weight

updates and range queries of the form: “What is the group
sum of the elements in the subarray from index i through
j?”.

The next result on group model lower bounds was due
to Fredman and Saks [15], who introduced the celebrated
chronogram technique. Using this technique, they again
proved lower bounds for the partial sums problem, stating
that any dynamic data structure must have an average cost
per operation of Ω(lg n/ lg lg n) over a sequence of n queries
and n updates [15]. While the lower bound is weaker than
the earlier lower bound of Fredman, it holds also for weakly
oblivious data structures.

In [12] and [11] Chazelle proved lower bounds for offline
range searching in the group model. For the problem of
offline halfspace range searching in two-dimensional space,
he showed an Ω(n lg n) lower bound on the total number
of group operations needed [12]. In the offline halfspace
range searching problem, the input consists of n points and n
halfspaces, and the goal is to compute for each halfspace the
group sum of the weights assigned to the points intersecting
it. In [11] he applied his techniques to orthogonal range
searching as well, and managed to show a lower bound of
Ω(n lg lg n) in the two-dimensional case. Orthogonal range
searching is essentially the extension of partial sums to
higher dimensions: Here the input consists of n points, and
the query ranges are axis-aligned rectangles.

The next big result was due to Pǎtraşcu and Demaine [21],
who managed to show an Ω(lg n) lower bound on the
average cost per operation over a sequence of n updates
and n queries to the partial sums problem. While matching
the early results of Fredman, this bound also hold for weakly
oblivious data structures.

Finally, Pǎtraşcu [20] proved an Ω(lg n/ lg(lg n+ S/n))
lower bound for the query time of static data structures for
two-dimensional orthogonal range searching. Here S is the
space used by the data structure in number of precomputed
group sums. Using an elegant extension of the chronogram
technique, this provided the highest lower bound to date
for any dynamic range searching problem in the group
model, namely tq = Ω((lg n/ lg(lg n + tu))2), where tq
is the query time and tu is the update time. This lower
bound applies to weakly oblivious data structures for two-
dimensional orthogonal range searching.

On the upper bound side, there is no separation between
what has been achieved for oblivious and weakly oblivious
data structures. Thus, all the bounds we mention in the
following hold for both types of data structures.

The best results for d-dimensional orthogonal range
searching in the group model is achieved through the data
structures known as range trees [8]. These data structures
provide a solution with tq = tu = O(lgd n). From the above
lower bounds, these data structures are seen to be optimal in
1-d, and to have a query time within lgO(1) lg n factors from
optimal in 2-d. Unfortunately it is not even known from a

lower bound perspective whether the query and update time
must grow with dimension.

For halfspace range searching, one can use Chan’s lat-
est results on partition trees to give data structures with
tu = O(lg lg n) and tq = O(n1−1/d) [10], and with
some extra work, one can extend the results in [19] to
achieve a tradeoff between query time and update time of
tq = Õ(n1−1/d/t

1/d
u), for any tu = Ω(lg n). Here Õ(·)

hides polylogarithmic factors. Thus the highest known lower
bound for any explicit problem is exponentially far from the
best known upper for halfspace range searching.

1.2. Combinatorial Discrepancy

The minimum discrepancy problem mentioned earlier is
the central problem in combinatorial discrepancy. Under-
standing the best achievable colorings for various families of
set systems has been an active line of research for decades,
and the results obtained have found numerous applications in
other areas of computer science, see for instance the seminal
books of Matoušek [18] and Chazelle [13] for introductions
to discrepancy theory, and for applications in complexity
lower bounds, computational geometry, pseudo-randomness
and communication complexity.

The results most important to our work are those related
to families of set systems with a range searching flavor to
them. More formally, if we let X be a universe of geometric
objects (think of X as all possible input geometric objects
to a range searching problem, for instance all points d-
dimensional space), P ⊂ X a set of n geometric input ob-
jects (a concrete input to a range searching problem) andR a
collection of query ranges, where each query range R ∈ R
is a subset of X (for every query to the range searching
problem, R contains a set consisting of those elements in X
that intersects the query range), then we define the induced
set system (P,AP,R), where AP,R = {R ∩ P : R ∈ R}
is the family of sets containing for each R ∈ R, the set
consisting of all input objects that are contained in R (AP,R
is also known in the literature as the trace of R on P). With
this definition, we define the discrepancy disc(P,R) as

disc(P,R) = min
χ:P→{−1,+1}

disc(χ, P,AP,R),

thus the discrepancy measures the best achievable 2-coloring
of the induced set system of P and R. Finally, we define the
number of distinct query ranges of an induced set system
as |AP,R|, that is, as the number of distinct sets (AP,R is
not a multiset).

To make absolutely clear the connection to range search-
ing, consider as an example the d-dimensional orthogonal
range searching problem. Here X is simply Rd, i.e. the set
of all d-dimensional points. The family R similarly contains
all axis-aligned rectangles in Rd (each axis-aligned rectangle
is a subset of Rd). Finally, we see that for any induced set
system (P,AP,R), where P is a set of n input points in X ,

the number of distinct query ranges is bounded by O(n2d)
since each axis-aligned rectangle defining a range in R can
be shrunk to have one point from P on each of its 2d sides
without changing the set of input points contained in the
query range.

Previous Results: In the following, we review the
discrepancy upper and lower bounds related to the most
fundamental types of range searching. We note that a lower
bound on the discrepancy of a range searching problem is
a proof that there exists a subset P ⊂ X of n input objects
to the range searching problem, for which disc(P,R) is
bounded from below, while upper bounds on the discrepancy
imply that disc(P,R) is bounded from above for all subsets
P ⊂ X of n input objects.

The discrepancy of halfspace range searching is particu-
larly well understood. If we let Hd denote the set of all
halfspaces in d-dimensional space (where each halfspace
H ∈ Hd is a subset of Rd), then Alexander [1] proved
that there exists a set P of n points in Rd, such that
disc(P,Hd) = Ω(n1/2−1/2d). A matching upper bound was
subsequently established by Matoušek [17].

For orthogonal range searching (or axis-aligned rectan-
gles), the picture is more muddy. On the lower bound side,
Beck [4] proved that there exists a set P of n points in R2,
such that disc(P,B2) = Ω(lg n), where we use Bd to denote
the family containing all axis-aligned rectangles in Rd. How-
ever, in dimensions d ≥ 3, the highest achieved lower bound
is only Ω(lg(d−1)/2+µ(d) n), where µ(d) > 0 is some small
but strictly positive function of d [9]. On the upper bound
side, Srinivasan [23] proved that disc(P,B2) = O(lg2.5 n)
for any set P of n points in R2, and for dimensions d ≥ 3,
the best upper bound is O(lgd+1/2 n

√
lg lg n) [18].

If the ranges are balls with arbitrary radius, then a
discrepancy lower bound of Ω(n1/2−1/2d) can be established
from the results on halfspace ranges [18] (a large enough
ball looks locally like a halfspace). A matching lower bound
was proved in the two-dimensional case, even when all balls
(discs) have a fixed radius [5].

For line range searching, Chazelle and Lvov proved
that there exists a set P of n points in R2, such that
disc(P,L2) = Ω(n1/6) [14]. Here L2 denotes the set of
all lines in two-dimensional space.

Another interesting lower bound is related to arithmetic
progressions. Let (Y,A) be the set system where Y =
{0, . . . , n− 1} and A contains every arithmetic progression
on Y , i.e. for every pair of integers i, d satisfying 0 ≤ i, d <
n, A contains the set Ai,d = {i+ jd | j ∈ {0, . . . , b(n− i−
1)/dc}}. Then Roth proved disc(Y,A) = Ω(n1/4) [22].

Finally, we conclude by mentioning some additional dis-
crepancy upper bounds that are related to the later proofs in
this paper. If (Y,A) is a set system in which every Ai ∈ A
has cardinality at most t, then Banaszczyk [2] proved that
disc(Y,A) = O(

√
t lg |Y |). The best bound for this problem

that is independent of |Y | is due to Beck and Fiala [6], and

it states that disc(Y,A) = O(t). We note that there exist
results [7] improving on the additive constants in the bound
of Beck and Fiala. While many discrepancy upper bounds
are purely existential, we mention that Bansal [3] recently
gave constructive discrepancy minimization algorithms for
several central problems.

1.3. Our Results

The main result of this paper is the establishment of a
theorem relating the update and query time of dynamic
range searching data structures in the group model and
the combinatorial discrepancy of the corresponding range
searching problem. Before presenting our theorem, we need
one final definition regarding oblivious data structures.

Recall that an oblivious data structure preprocesses an
input set of n geometric objects into a collection of group
elements, each corresponding to a linear combination over
the weights assigned to the input objects. Queries are an-
swered by again computing linear combinations over the
precomputed group elements, and updates are supported by
re-evaluating every linear combination involving the weight
of the updated point. We define the multiplicity of an oblivi-
ous data structure as the largest absolute value occurring as a
coefficient in any of these linear combinations. We note that
every known data structure uses only coefficients amongst
{−1, 0,+1}, thus all known data structures have multiplicity
1, but there is nothing inherent in the group model that
prevents larger coefficients. When giving our more formal
definition of oblivious data structures in Section 2, we also
give a more precise definition of multiplicity.

We are finally ready to present the main result of this
paper:

Theorem 1. Let R be the query ranges of a range searching
problem, where each set in R is a subset of a universe X .
Furthermore, let P ⊂ X be a set of n geometric input
objects to the range searching problem. Then any oblivious
data structure for the range searching problem must satisfy
∆2
√
tutq lgm = Ω(disc(P,R)) on the input set P . Here

∆ denotes the multiplicity of the data structure, tu its worst
case update time, tq its worst case query time and m the
number of distinct query ranges in (P,AP,R).

Thus for constant multiplicity oblivious data structures
(which includes all known upper bounds), we get extremely
high lower bounds compared to previous results. We mention
these lower bounds in the following (for constant multiplic-
ity), and note that the number of distinct query ranges for
all of the considered problems is polynomial in the input
size:

For halfspace range searching in d-dimensional space we
get a lower bound of

tutq = Ω(n1−1/d/ lg n),

simply by plugging in the discrepancy lower bound of
Ω(n1/2−1/2d). This comes within a lg n lg lg n factor of
Chan’s upper bound, and is exponentially larger than the
highest previous lower bound for any explicit problem of
tq = Ω((lg n/ lg(lg n+ tu))2). We note that halfspace range
searching is a special case of simplex range searching, this
bound therefore also applies to simplex range searching.

For orthogonal range searching, we do not improve on
the best bounds in the two-dimensional case, but for d-
dimensional orthogonal range searching we get a lower
bound of

tutq = Ω
(

lgd−2+2µ(d) n
)

from the discrepancy lower bound Ω(lg(d−1)/2+µ(d) n). By a
simple reduction, this bound also applies to the well-studied
problem of d-dimensional rectangle stabbing (range search-
ing where the input set contains axis-aligned rectangles, and
the queries are points).

For d-dimensional ball range searching, our lower bound
matches that for halfspace range searching, and in the two-
dimensional case the bound holds even when all query balls
(discs) have the same fixed radius.

For line range searching, that is, range searching where
the input is a set of n two-dimensional points and a query
ask to sum the weights of all points intersecting a query line,
we get a lower bound of tutq = Ω(n1/3/ lg n).

Finally, for the arithmetic progression range searching
problem, i.e. the range searching problem where the input
is a set of n ordered points p0, . . . , pn−1 and a query
asks to sum the weights of the points in an arithmetic
progression (see Section 1.2), we get a lower bound of
tutq = Ω(n1/2/ lg n).

For more lower bounds we refer the reader to the books
by Matoušek [18] and Chazelle [13].

Our result also has implications for the field of combi-
natorial discrepancy. By contraposition of Theorem 1, we
get a discrepancy upper bound for d-dimensional orthogonal
range searching (axis-aligned rectangles) of O(lgd+1/2 n)
directly from the textbook range tree data structures with
tu = tq = O(lgd n). While the improvement over the best
previous result is only a

√
lg lg n factor in dimensions d ≥ 3,

we still find this a beautiful example of the interplay between
data structures and combinatorial discrepancy.

Finally, we mention that our proof of Theorem 1 relies on
a, we believe, novel application of discrepancy upper bound
techniques.

2. PRELIMINARIES

In the following we define range searching, oblivious data
structures and discrepancy in terms of matrices.

Incidence Matrices: Let (P,AP,R) be the induced
set system of a set P = {p1, . . . , pn} of n geometric
objects and a family R of query ranges. Then we define
the incidence matrix CP,R ∈ {0, 1}|AP,R|×n of R and P

as the {0, 1}-matrix having a column for each input object
in P and a row for each set in the induced set system
AP,R = {A1, . . . ,A|AP,R|}. The i’th row of CP,R has a
1 in the j’th column if pj ∈ Ai and a 0 otherwise.

Oblivious Data Structures: Consider a range searching
problem where the query ranges R are subsets of a universe
X . Then an oblivious data structure for the range searching
problem is a factorization of each incidence matrix CP,R,
where P ⊂ X is a set of n geometric input objects, into
two matrices QP,R and DP,R such that QP,R · DP,R =
CP,R [16].

The data matrix DP,R ∈ ZS×n represents the precom-
puted group sums stored by the data structure on input P .
Each of the S rows is interpreted as a linear combination
over the weights assigned to the n input objects, and we
think of the data structure as maintaining the corresponding
group sums when given an assignment of weights to the
input objects.

The query matrix QP,R ∈ Z|AP,R|×S specifies the query
algorithm. It has one row for each set Ai in the induced
set system AP,R, and we interpret this row as a linear
combination over the precomputed group sums, denoting
which elements to add and subtract when answering a query
range intersecting precisely the input objects in Ai.

We note that with the above interpretations of the data
and query matrix, we get that QP,R · DP,R = CP,R
ensures that when given a query range R ∈ R, the query
algorithm adds and subtracts a subset of the precomputed
linear combinations to finally yield the linear combination
summing precisely the weights assigned to the input objects
intersecting R. For a concrete example of what the matrices
corresponding to a data structure might look like, we refer
the reader to Section 4.1 where we review the data structure
solution for orthogonal range searching.

The worst case query time of an oblivious data structure
on an input set P , is defined as the maximum number of
non-zero entries in a row of QP,R. The worst case update
time on an input set P is similarly defined as the maximum
number of non-zero entries in a column of DP,R. The space
of the data structure is the number of columns in QP,R
(equivalently number of rows in DP,R). Finally, we define
the multiplicity as the largest absolute value of an entry in
DP,R and QP,R.

Combinatorial Discrepancy and Matrices: The defini-
tion of discrepancy can also be stated in terms of matrices.
Let P be a set of n geometric input objects and R a family
of query ranges. Then

disc(P,R) = min
x∈{−1,+1}n

‖CP,R · x‖∞

is easily seen to be the exact same definition of disc(P,R)
as the one we presented in the introduction. Here ‖ · ‖∞
gives the largest absolute value amongst the coordinates of
a vector.

3. ESTABLISHING THE CONNECTION

In this section we prove our main result, Theorem 1. Let
R be a collection of query ranges, all subsets of a universe
X . Also let P ⊂ X be a set of n geometric input objects.
Our goal is to show that CP,R cannot be factored into two
matrices QP,R and DP,R, unless QP,R has a row with many
non-zero entries, or DP,R has a column with many non-zero
entries, i.e. either the query or update time of an oblivious
data structure for the input set P must be high.

Our key idea for proving this, is to multiply a fac-
torization by a cleverly chosen vector. More formally, if
QP,R · DP,R = CP,R is a factorization provided by the
oblivious data structure, then we find a vector x ∈ Rn such
that QP,R · DP,R · x has small coefficients if QP,R and
DP,R are too sparse, and at the same time CP,R ·x has large
coefficients. Since QP,R ·DP,R · x = CP,R · x this gives us
our lower bound. The trick in finding a suitable vector x is
to consider vectors in {−1,+1}n. Making this restriction
immediately allows us to use combinatorial discrepancy
lower bounds to argue that CP,R·x has large coefficients, and
at the same time we can use combinatorial discrepancy upper
bound techniques to exploit the sparse rows and columns of
QP,R and DP,R.

Proof of Theorem 1: Let R be the query ranges of the
range searching problem and P a set of n geometric input
objects. Furthermore, let m denote the number of distinct
query ranges in (P,AP,R), and assume that an oblivious
data structure for the input set P exists, having worst case
update time tu, worst case query time tq and multiplicity ∆.

Let QP,R · DP,R = CP,R denote the corresponding
factorization provided by the oblivious data structure. Our
first step is to argue that there exists a vector x ∈ {−1,+1}n
for which ‖QP,R · DP,R · x‖∞ is small. The existence of
this vector is guaranteed by the following theorem:

Theorem 2. Let Q ∈ Rm×p and D ∈ Rp×n be two matrices
of reals, such that every row of Q has at most tQ non-zero
entries, and every column of D has at most tD non-zero
entries. Finally, let ∆ be an upper bound on the absolute
value of any entry in Q and D. Then there exists a vector
x ∈ {−1,+1}n, such that ‖QDx‖∞ = O(∆2

√
tDtQ lgm).

Before proving the theorem, we show that it implies
Theorem 1. Recall that all coefficients in QP,R and DP,R
are bounded in absolute value by the multiplicity ∆ of the
oblivious data structure. At the same time, each row of QP,R
has at most tq non-zero entries, and each column of DP,R
has at most tu non-zero entries. Finally, since (P,AP,R)
has at most m distinct query ranges, we get that QP,R
has at most m rows. Thus by Theorem 2, there exists a
vector x∗ ∈ {−1,+1}n such that ‖QP,R ·DP,R · x∗‖∞ =
O(∆2

√
tutq lgm). Since x∗ ∈ {−1,+1}n, we also have

‖CP,R·x∗‖∞ ≥ disc(P,R). But QP,R·DP,R·x∗ = CP,R·x∗,
thus it must hold that ∆2

√
tutq lgm = Ω(disc(P,R)),

which completes the proof of Theorem 1.

Proof of Theorem 2: This paragraph is devoted to
proving Theorem 2. Throughout the paragraph, we let Q ∈
Rm×p and D ∈ Rp×n be matrices satisfying the constraints
of Theorem 2. The main tool in our proof is a result in
discrepancy theory due to Banaszczyk [2]. We first introduce
some terminology and then present his result.

Let ‖ · ‖2 denote the Euclidian norm on Rp, and Bp2
the closed Euclidean unit ball in Rp. Let γp denote the
(standard) p-dimensional Gaussian measure on Rp with
density (2π)−p/2e−‖x‖

2
2/2. Then the following holds

Theorem 3 (Banaszczyk [2]). There is a numerical constant
c > 0 with the following property. Let K be a convex body in
Rp with γp(K) ≥ 1/2. Then to each sequence u1, . . . , un ∈
cBp2 there corresponds signs ε1, . . . , εn ∈ {−1,+1} such
that ε1u1 + · · ·+ εnun ∈ K.

To prove Theorem 2, we seek a column vector x ∈
{−1,+1}n that somehow simultaneously exploits the sparse
rows of Q and the sparse columns of D. We argue for the
existence of this vector by carefully defining a convex body
capturing the sparsity of Q, and a sequence of vectors in cBp2
that captures the sparsity of D. The application of Theorem 3
on this choice of convex body and vectors in cBp2 then yields
the desired vector x. We first define the following convex
body Kα in Rp:

Kα := {y = (y1, . . . , yp) ∈ Rp |
|〈Q1, y〉| ≤ α ∧ · · · ∧ |〈Qm, y〉| ≤ α}

where Qi denotes the i’th row vector of Q, 〈Qi, y〉 =∑p
j=1Qi,jyj is the standard inner product, and α ≥ 0 is

a parameter to be fixed later.
In understanding our choice of Kα, think of each di-

mension in Rp as representing one coordinate of Dx. In
this setting, each of the constraints |〈Qi, y〉| ≤ α intuitively
forces the coordinates of QDx to be small. Our goal is to
employ Theorem 3 on Kα, thus we find a value of α such
that γp(Kα) ≥ 1/2:

Lemma 1. If α = Ω(∆
√
tQ lgm), then γp(Kα) ≥ 1/2.

Proof: Recall that γp(Kα) denotes the probability that
a random vector z ∈ Rp, with each coordinate distributed
independently as a Gaussian with mean 0 and variance 1,
lies within Kα. In computing this probability, we first bound
Pr[|〈Qi, z〉| > α] for a fixed i. Since each row Qi has at
most tQ non-zero entries, we get that 〈Qi, z〉 is a linear
combination of at most tQ independent Gaussians, each with
mean 0 and variance 1. Furthermore, each coefficient in the
linear combination is bounded by ∆ in absolute value, thus
〈Qi, z〉 is itself Gaussian with mean 0 and variance σ2 ≤
tQ∆2. By standard tail bounds for Gaussian distributions,
we get that Pr[|〈Qi, z〉| > α] = e−O(α2/σ2). Setting α =
Ω(∆

√
tQ lgm) = Ω(σ

√
lgm) this is less than 1/m2. By

a union bound over all m constraints in the definition of

Kα, we conclude that Pr[z /∈ Kα] < 1/m, i.e. γp(Kα) >
1− 1/m > 1/2.

We are now ready to define a sequence of vectors in cBp2
and apply Theorem 3. Letting Dj denote the j’th column
vector of D, we define the vectors d1, . . . , dn, where dj =
c/(∆

√
tD) · Dj , and c > 0 is the constant in Theorem 3.

Since each column of D has at most tD non-zero entries,
each bounded by ∆ in absolute value, we get that ‖Dj‖2 ≤√
tD∆ for all j, and thus d1, . . . , dn ∈ cBp2 .
Letting α = Θ(∆

√
tQ lgm), we get by Theorem 3,

that there exist signs ε1, . . . , εn ∈ {−1,+1} such that∑n
j=1 εjdj ∈ Kα. Now define the vector x = (ε1, . . . , εn).

We claim that ‖QDx‖∞ = O(∆2
√
tDtQ lgm). To see

this, note that Dx =
∑n
j=1 εjDj = c−1∆

√
tD
∑n
j=1 εjdj .

Now consider the i’th coordinate of QDx. This co-
ordinate is given by the inner product 〈Qi, Dx〉 =
c−1∆

√
tD〈Qi,

∑n
j=1 εjdj〉. But since

∑n
j=1 εjdj ∈ Kα,

this is by definition of Kα bounded in absolute value
by c−1∆

√
tDα = O(∆2

√
tDtQ lgm). This concludes the

proof of Theorem 2.

4. IMPLICATIONS

Having established Theorem 1, we now get to the fun
part, all of the immediate implications. To not waste space
on repeating ourselves, we refer the reader to the list of our
results presented in Section 1.3 for an overview of the range
searching lower bounds achieved (they follow directly by
plugging in the discrepancy lower bounds from Section 1.2
in Theorem 1). Thus for the remainder of the section,
we present our combinatorial discrepancy upper bound for
orthogonal range searching (axis-aligned rectangles).

4.1. Combinatorial Discrepancy Upper Bounds

In this section we review the classic data structure so-
lution to orthogonal range searching [8]. We give a rather
thorough review to also make clear the translation of a data
structure into matrix factorization. We finally summarize the
implications of combining the solution with Theorem 1.

1-d Orthogonal Range Searching: We set out in the
one-dimensional case. Here the input to orthogonal range
searching is a set P of n points on the real line, and the
goal is to support computing the group sum of the weights
assigned to the input points intersecting a query interval.
This problem clearly includes the partial sums problem as a
special case.

The solution to this problem, is to construct a complete
binary tree T over the input points ordered by their coordi-
nates. Each leaf of T is associated to one input point, and
each internal node v is associated to the range of points
associated to the leaves of the subtree rooted at v. The data
structure stores one group sum for each node in T . The
group sum stored for a node v is simply the sum of the
weights assigned to the input points associated to v.

Let [x1, x2] be a range query. To answer the range query,
we first find the two leaves v1 and v2 containing the
successor of x1 and the predecessor of x2 respectively. Let
u denote the lowest common ancestor of v1 and v2. We now
traverse the path from the left child of u to v1, and for each
node w that is a right child of a node on this path, but not
itself on the path, we add up the group sum stored at w. We
then do the same with v1 replaced by v2 and the roles of left
and right reversed, and finally we add up the group sums
stored at v1 and v2. This is easily seen to sum precisely the
weights of the points with a coordinate in the range [x1, x2].

Since the height of T is O(lg n), we get that the data
structure answers queries in tq = O(lg n) group operations.
The weight of each input point p is associated to one node at
each level of the tree, namely the ancestor nodes of the leaf
associated to p. Thus the update time is also tu = O(lg n),
since an update consists of re-evaluating the group sums
stored in these nodes.

For completeness, we also sketch what the matrices QP,R
and DP,R looks like for this data structure. The data matrix
DP,R has one row for each node in T and one column for
each input point. The row corresponding to a node v has a
1 in the column corresponding to a point p if p is associated
to v, and a 0 otherwise. The query matrix QP,R has a
column for each node in T (i.e. for each stored group sum).
Furthermore, if p1, . . . , pn denotes the input points ordered
by their coordinate, then QP,R has one row for every pair
of points pi and pj , (i ≤ j). For the row corresponding to a
pair pi and pj , let [xi, xj] denote a query range containing
precisely the coordinates of the points pi, . . . , pj . Then that
row has a 1 in each column corresponding to a node for
which the stored group sum is added up when executing the
above query algorithm on [xi, xj], and a 0 elsewhere.

Higher Dimensions: The above data structure is easily
generalized to higher dimensions. Let P denote the input
points, and construct the one-dimensional layout on the last
coordinate of the points, i.e. construct a complete binary tree
over the sorted list of points. Each node in the tree no longer
maintains the group sum of the weights assigned to points
in the subtree, but instead it stores a (d − 1)-dimensional
data structure on the projection of the points in the subtree
onto the first (d− 1) dimensions.

A query [x1, x2]×· · ·×[x2d−1, x2d] is answered analogous
to the one-dimensional approach, except that whenever the
one-dimensional data structure adds up the group sum stored
in a node, we instead project the query range onto the first
d−1 dimensions, and ask the resulting query to the (d−1)-
dimensional data structure stored in that node. Since each
queried (d − 1)-dimensional data structure is implemented
only on points with a d’th coordinate inside [x2d−1, x2d],
this correctly computes the answer to the query range.

It is easily seen that the weight of a point is included
in O(lgd n) stored group sums, thus the update time of
this data structure is tu = O(lgd n). The query algorithm

similarly adds up tq = O(lgd n) stored group sums. Finally,
we observe that this data structure has multiplicity 1 since
the corresponding matrix factorizations use only coefficients
amongst {0, 1}. By contraposition of Theorem 1 we thus
conclude

Corollary 1. For any set P of n points in d-dimensional
space, it holds that disc(P,Bd) = O(lgd+1/2 n), where Bd
denotes the set of all axis-aligned rectangles in Rd.

5. CONCLUSION

In this paper we established a powerful theorem relating
the update and query time of dynamic range searching
data structures in the group model and the combinatorial
discrepancy of the corresponding range searching problem.
Our result immediately implied a whole range of data
structure lower bounds, and also an improved upper bound
for the discrepancy of axis-aligned rectangles in dimensions
d ≥ 3.

We believe our result is a big leap in the right direction,
but there are still a number of open problems to consider.
Most importantly, we would like to remove the dependence
on the multiplicity of data structures. Proving lower bounds
independent of the multiplicity seems closely related to ma-
trix rigidity, and thus might turn out to be very challenging.
A breakthrough in this direction might also help towards
establishing higher lower bounds for static range searching
problems. On the other hand, it would also be interesting to
find an example of a range searching problem for which high
multiplicity helps. If possible, this seems to involve finding
a completely new approach to designing data structures, and
might inspire improved solutions to many natural problems.
Extending the achieved lower bounds to weakly oblivious
data structures would also be a major result, especially if
this could be done independent of the multiplicity. Previous
such lower bounds could even be extended to the cell-
probe model. Obtaining a lower bound for halfspace range
searching that (essentially) matches the entire tradeoff curve
of [19] would also be a great result, but it seems to require
many new ideas.

ACKNOWLEDGMENT

The author wishes to thank Timothy M. Chan, Peter Bro
Miltersen, Jeff M. Phillips and Elad Verbin for much useful
discussion on the contents and writing of this paper.

REFERENCES

[1] R. Alexander, “Geometric methods in the study of irregu-
larities of distribution,” Combinatorica, vol. 10, no. 2, pp.
115–136, 1990.

[2] W. Banaszczyk, “Balancing vectors and gaussian measures
of n-dimensional convex bodies,” Random Structures & Al-
gorithms, vol. 12, pp. 351–360, July 1998.

[3] N. Bansal, “Constructive algorithms for discrepancy mini-
mization,” in Proc. 51st IEEE Symposium on Foundations of
Computer Science, 2010, pp. 3–10.

[4] J. Beck, “Balanced two-colorings of finite sets in the square
I,” Combinatorica, vol. 1, no. 4, pp. 327–335, 1981.

[5] ——, “On irregularities of point sets in the unit square,” in
Combinatorics. Proc. 7th Hungarian colloquium, 1988, pp.
63–74.

[6] J. Beck and T. Fiala, “Integer-making theorems,” Discrete
Applied Mathematics, vol. 3, pp. 1–8, February 1981.

[7] D. Bednarchak and M. Helm, “A note on the Beck-Fiala
theorem,” Combinatorica, vol. 17, no. 1, pp. 147–149, 1997.

[8] J. L. Bentley, “Multidimensional divide-and-conquer,” Com-
munications of the ACM, vol. 23, no. 4, pp. 214–229, 1980.

[9] D. Bilyk, M. T. Lacey, and A. Vagharshakyan, “On the
small ball inequality in all dimensions,” Journal of Functional
Analysis, vol. 254, pp. 2470–2502, May 2008.

[10] T. M. Chan, “Optimal partition trees,” in Proc. 26th ACM
Symposium on Computational Geometry, 2010, pp. 1–10.

[11] B. Chazelle, “Lower bounds for off-line range searching,” in
Proc. 27th ACM Symposium on Theory of Computation, 1995,
pp. 733–740.

[12] ——, “A spectral approach to lower bounds with applica-
tions to geometric searching,” SIAM Journal on Computing,
vol. 27, pp. 545–556, 1998.

[13] ——, The Discrepancy Method: Randomness and Complexity.
Cambridge University Press, 2000.

[14] B. Chazelle and A. Lvov, “A trace bound for the hereditary
discrepancy,” in Proc. 16th ACM Symposium on Computa-
tional Geometry, 2000, pp. 64–69.

[15] M. L. Fredman and M. Saks, “The cell probe complexity of
dynamic data structures,” in Proc 21st ACM Symposium on
Theory of Computation, 1989, pp. 345–354.

[16] M. L. Fredman, “The complexity of maintaining an array and
computing its partial sums,” Journal of the ACM, vol. 29, pp.
250–260, January 1982.

[17] J. Matoušek, “Tight upper bounds for the discrepancy of half-
spaces,” Discrete and Computational Geometry, vol. 13, pp.
593–601, 1995.

[18] ——, Geometric Discrepancy. Springer, 1999.
[19] J. Matoušek, “Efficient partition trees,” Discrete and Compu-

tational Geometry, vol. 8, pp. 315–334, 1992.
[20] M. Pǎtraşcu, “Lower bounds for 2-dimensional range count-

ing,” in Proc. 39th ACM Symposium on Theory of Computa-
tion, 2007, pp. 40–46.

[21] M. Pǎtraşcu and E. D. Demaine, “Logarithmic lower bounds
in the cell-probe model,” SIAM Journal on Computing,
vol. 35, pp. 932–963, April 2006.

[22] K. F. Roth, “Remark concerning integer sequences,” Acta
Arithmetica, vol. 9, pp. 257–260, 1964.

[23] A. Srinivasan, “Improving the discrepancy bound for sparse
matrices: better approximations for sparse lattice approxi-
mation problems,” in Proc. 8th ACM/SIAM Symposium on
Discrete Algorithms, 1997, pp. 692–701.

